
*Mosquitoes biting frogs* is copyright by Elizabeth N. Marks 1960.

Permission has been granted by the University of Queensland Library and the executors of the estate of Dr Elizabeth Nesta Marks for display of *Mosquitoes biting frogs* on the SERF website.
Mosquitoes Biting Frogs

There are no records from the Australian region of mosquitoes biting amphibians, nor of mosquitoes of the group feeding on frogs. The first record of a mosquito feeding on a frog was made by Bancroft (1906) in the Philippines. Further records of mosquitoes feeding on frogs were reported by O’Gorman (1945) in Australia, and by Remington (1945) in the U.S.A.

At the Mitchell River Mission, North Queensland, I collected the following mosquitoes from frogs: Culex (Lophoceraomyia) sp. 1 female, and Culex (Lophoceraomyia) sp. 2 females.

This frog frequented the verandah of a building about 50 yards from a permanent creek, and remained quiet when a torch was shone on it and the mosquitoes collected with an aspirator. Adults of C. albescens and of C. (Lophoceraomyia) sp. were exceedingly numerous in daytime resting places amongst dense water hyacinth in the creek. C. (Lophoceraomyia) females were also taken biting man and horse. Males of three species of this subgenus were collected among hyacinth, but females cannot at present be specifically identified.

H. ceraulea is known to harbor a haemogregarine parasite in its blood, and the possibility of these or other mosquitoes acting as the invertebrate host of this parasite is worth investigation.

ELIZABETH N. MARKS.
National Mosquito Control Committee,
Department of Entomology,
University of Queensland.
20 May 1959.

References


Permission granted by the University of Queensland Library and the executors of the estate of Dr Elizabeth Nesta Marks for display of this publication on the QUT SERF website.

BOOK SECTION

Reviews

Agronomy


The article on water in relation to crops and soils of special interest. It marks a departure from the normal type of contribution in that it occupies more than a quarter of the volume and was prepared by a large group of co-authors (with general co-ordination by M. B. Russell). Together, the specific contributions of which it is composed constitute a valuable statement, covering the more important aspects of agricultural and plant physiological water use. The contributions concerned with agricultural water use (D. E. Angus), the role of water in the physiology of plants (J. K. Kramer) and the interpretation of plant responses to soil moisture régime (R. M. Hagan, Y. Vaadia and M. B. Russell), are of particular value, serving to integrate the role of water in the whole soil-plant-atmosphere cycle. Other subjects are treated in less detail, reflecting the author's own evaluation of the need for detail and the relevance of the subject to the central theme. This does not appear to detract significantly from the work as a whole, except perhaps in the discussion concerning interactions of water and soil, where more detail would appear to have been desirable.

The three contributions on fertilizer use and technology cover the economics of fertilizer use, technology of fertilizer production and include a specific review on the effect of nitrogen on the availability of phosphorus to plants. The first two contributions emphasize the continued rapid increase in fertilizer use, which has been reflected in a doubling of world consumption over the past decade. The contribution on economics of fertilizer use (B. D. Munson and J. P. Doll) impresses with the importance of careful evaluation of fertilizer application, in its relation to crop yield, not only in relation to the crop being fertilized, but also in terms of the residual effects on subsequent crops. In this sense also, the specific contribution on the effect of nitrogen on the availability of soil and fertilizer phosphorus to plants (D. L. Grunes) is of special interest.